Город: Тест Санкт-Петербург Новосибирск Казань Язык: Русский English

Построение дерева двоичного разбиения пространства, вероятностный метод, неравенство Буля
Рандомизированные алгоритмы

Что: Лекция
Когда: Среда, 17 февраля 2021, 18:10–19:45
Где: НГУ, ауд. 5210, НГУ, новый корпус

Описание

В этой лекции ознакомимся с первыми ключевыми подходами к анализу рандомизированных алгоритмов: с линейностью математического ожидания и вероятностным методом доказательства.

Оба подхода проиллюстрируем на примере построения деревьев двоичного разбиения пространства (BSP-деревьев), приобретших большую известность из-за приложений при быстрой прорисовке 3D-сцен и обнаружении столкновений в компьютерных играх как Doom и Quake. Для быстрой прорисовки сцены важно, чтобы дерево было маленьким. Построение маленького дерева нетривиально. Мы посмотрим простой рандомизированный алгоритм для построения BSP-дерева почти оптимального размера.

Дальше мы перейдём к ещё одному элементарному средству для анализа рандомизированных алгоритмов --- к неравенству Буля. Оно говорит о том, что хотя бы одно из событий $E_1,\dots,E_n$ наступит с вероятностью не больше, чем сумма вероятностей индивидуальных событий. Этот элементарное неравенство теории вероятностей встречается в анализе многих алгоритмов.