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Problems

Problem 1 (Truncated SVD as best low-rank approxima-
tion)

Let Ak =
∑k
i=1 σiuiv

T
i be the truncated SVD. Give a formal proof (check slides

for hints) that this gives the best possible rank-k approximation of A, i.e. for
any matrix B of rank at most k:

‖A−Ak‖F ≤ ‖A−B‖F

Problem 2 (Frobenius norm)

1. For any matrix A show that σk ≤ ‖A‖F√
k

.

2. Prove that there exists a matrix B of rank at most k such that ‖A−B‖2 ≤
‖A‖F√

k
.

3. Does there exist a matrix B of rank at most k such that ‖A−B‖F ≤ ‖A‖F√
k

?

If yes, construct B, if no then give a counterexample.

Problem 3 (Faster power method)

In the lecture we discussed power method: using (ATA)n for large enough n
to compute the top singular vector. A major drawback of this approach for
sparse matrices is that B = ATA is dense even if A is sparse. Consider an
alternative approach: we pick a random Gaussian vector x (each coordinate is
i.i.d ∼ N(0, 1)) and compute Bnx. Note that in this case we can compute the
resulting expression as AT (A(AT (. . . AT (Ax), where each each matrix-vector
multiplication is sparse and hence can be done in nnz(A) time where nnz is the
number of non-zero entries in A.

Show the following statement:

Theorem 0.1. Let x be a unit vector in Rd and let v1 be the top singular vector
of A. Suppose that |xT v1| ≥ δ and:
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• V is a subspace spanned by singular vectors vj such that σj ≥ (1− ε)σ1

• Let z = (ATA)kx for k = 1
2ε log(1/εδ) and w = z

‖z‖2
be a unit vector in

this direction.

Let w = w⊥ +w‖, where w‖ lies in V (is a projection on it) and w⊥ ⊥ V . Then

‖w⊥‖22 ≤ ε.

How can we use the theorem above to find the top singular vector using the
faster power method?
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