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1. Introduction

Creating composite images from aerial photographs is a key
step in orthomosaic generation. With the advent of inexpensive,
high quality, digital imaging; the increasing use of unmanned aer-
ial vehicles (UAVs); and the development of digital photogramme-
try techniques, orthomosaics are being made from large sets of
low-altitude aerial images. This means that more images need to
be composed to cover a given area, and that parallax effects are
more significant. As a result there has been significant attention
paid to automated techniques for generating orthomosaics from
aerial images.

A typical processing pipeline for automated orthomosaic gener-
ation can be summarised as follows:

1. (Digital) images are captured, generally along with navigation
data—usually the GPS location of the camera at the time each
image was captured, but possibly also camera orientation from
inertial sensors.

2. Structure-from-motion techniques are applied to generate a
terrain model, along with the camera locations and orienta-
tions. Alternatively an existing terrain model can be used (Mills
et al., 2009).

3. The images are reprojected onto the terrain model, creating an
orthoimage for each input photograph.
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4. These images are mosaiced in such a way as to minimise the
visual transition from one image to the next.

In this paper we concentrate on the final step of this process.
We assume that we are provided with orthoimages in some com-
mon co-ordinate frame, and our task is to create a single orthomo-
saic of the area covered. Similar image mosaicing problems arise in
a variety of contexts, and there are many sub-problems and algo-
rithms available, see Szeliski (2006) for a survey.

In the final mosaic image, each source image contributes data to
a small region. The boundaries between these regions are called
seamlines. The problem of finding a seamline between a pair of
images has been well studied (Fernandez et al., 1998; Kerschner,
2001; Zomet et al., 2006; Botterill et al., 2010; Chon et al., 2010;
Pan and Wang, 2011; Yang et al., 2011; Wan, 2012).

These methods typically minimise some cost function over the
difference between the overlapping images along the seamline.
Chon et al. (2010), for example, first identify the maximum inten-
sity difference that must be crossed by any seamline, and then use
this to remove any points with greater difference from consider-
ation. A graph search is then used to find a minimum cost path
through the remaining region of the image. This finds a path that
minimises the worst error (maximum difference) at any single pix-
el, and among all such paths finds the one with the minimum total
error.

A simple image difference is generally used for the cost func-
tion, but more detailed methods have been proposed. Pan and
Wang (2011) use image gradients as well as the image difference
to avoid crossing edge features. Yu et al. (2012) propose a more
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complicated cost function, based on measures of colour difference,
edge features, texture, proximity to the nadir point, and feature
saliency. These are combined in a weighted sum to give an overall
cost for each pixel in the image. The final seamline is then found as
a minimum cost path through this image.

These techniques can be applied recursively to compose images
into a mosaic. The mosaic is initialised as a single image, and then
each subsequent image is added with an appropriate seamline. The
final set of seamlines separating the image regions is known as the
seamline network.

This recursive approach, however, is dependent on the order in
which images are composed. In some applications, such as real-
time mosaicing from video (Botterill et al., 2010), there is a natural
ordering to the images. In general, however, an order-independent
solution is desirable to ensure that a globally optimal solution can
be found.

Yang et al. (2011) describe a bisector based seamline algorithm.
The overlapping regions between image pairs is approximated by a
quadrangle, and a bisecting polyline is used as the seam. This seam
placement method is generalised to more complex polygons and
multiple images, but seamline placement is made without refer-
ence to the image contents. As a result there is no effort made to
avoid areas where the seamline will cause significant artefacts.

Pan et al. (2009) present a system for automatically generating
a seamline network in a global sense. They introduce the concept
of ‘area Voronoi diagrams with overlap’ (AVDO), where the starting
point for the seamline network assigns each pixel to the nearest
image centre (by the Manhattan distance). In order to simplify this
process they assume that the individual orthoimages are well
approximated by quadrangles, and that the intersection of a pair
of overlapping images is also a quadrangle. The first assumption
is often a good approximation, but the second does not hold in gen-
eral, as illustrated in Fig. 1.

Once an initial seamline network has been generated it is re-
fined in two steps. Both steps are based on minimising the differ-
ence between co-incident pixels from the source images—by
placing the seamlines in regions where the adjacent images have
minimal difference, the visibility of the seamline is minimised.
Firstly the network junctions (where three or more seamlines
meet) are placed where the maximum difference between the

Fig. 1. The intersection of two quadrangles is not always a quadrangle.

P

Fig. 2. A misaligned feature (shaded square) in three images (top), leads to a region
of low difference (bottom) surrounded by a region of high difference (shaded).
While the central region looks like a good candidate for placing a junction, any
paths reaching it must pass through the high difference region.

(three or more) overlapping images is minimal. Secondly a bottle-
neck model (Fernandez et al., 1998) is used to find paths between
the seamlines that minimise the maximum difference along the
path. Since the network junctions are fixed, each path can be inde-
pendently estimated.

The method for network junction positioning may, however, se-
lect sub-optimal locations. Fig. 2 illustrates how a point which has
minimal difference could be surrounded by an area of high differ-
ence. Any paths to the junction must then incur the cost of passing
through this high difference area. Searching for optimal junction
locations, however, risks losing the local nature of the seamline
optimisation. If a junction is moved, then the seamlines connecting
it to its neighbouring junctions change, which could cause the
neighbours’ optimal locations to change, and so forth. Unless this
can be prevented, a combinatorial optimisation problem arises
over the set of all possible junction locations, and an exhaustive
search becomes computationally infeasible.

Our proposed method is similar to that of Pan et al. (2009), but
makes the following contributions:

o We remove the assumption that the input images’ extents are
well approximated by axis-aligned rectangles. This assumption
is not true in general, particularly with the ability of many UAVs
to fly arbitrarily defined GPS paths.

e We replace the heuristic (fixed) placement of the seamline net-
work junctions by a local search for optimal positions. This pro-
vides greater flexibility in selecting optimal seamlines.

e We provide a method for finding globally optimal seamlines
through a set of local optimisation procedures. This means that
the proposed method scales linearly with the number of images,
and is well suited to distributed processing.

The optimisation algorithm for seamline paths used is based on
Chon et al. (2010). We first identify a bottleneck point, which is a
point with the highest unavoidable cost—any seamline must pass
through a point with a cost at least as high as the bottleneck, but
there is at least one path that avoids any higher cost points. A min-
imum cost path is then found through the bottleneck via graph
search. However, we replace Chon et al.’s (2010) recursive bottle-
neck estimation procedure with a single-pass approach based on
the graph’s minimal spanning tree.

2. Seamline placement and optimisation

Our proposed method begins with an initial estimate of the
seamline network in the mosaic image. The requirements on this
estimate are minimal—the initial seamlines must lie in the overlap-
ping regions of the images they join, and each image must be sur-
rounded by a closed curve of seamlines except at the edges of the
mosaic. We represent this network as a seamline graph Gs = (Vs,Es),
with vertex set Vs = {vy, 15, ..., ¢}, and edge set Es = {e;|v; and v; are
linked by a seamline}.

The initial seamline networks used in our research are based on
a Voronoi diagram (Aurenhammer, 1991). The camera location for
each image (known from GPS) is projected on to a ground plane. A
Voronoi diagram is then made, allocating each point in the mosaic
to the nearest camera centre. The boundaries between Voronoi
cells are our initial seamline network, and vertices are formed
where three or more cells meet. The details of the initial seamline
estimation network, however, are not critical, and our proposed
approach can be used to refine seamlines estimated by any
method.

Next, a set of search regions is established. Firstly, a vertex
search region, R;, is defined around each v € Vs, defining the area
that will be searched for an optimal junction location. These re-
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gions must be continuous and include »;. Furthermore, all pairs of
regions must be disjoint and non-adjacent. That is, there must be at
least one pixel between each pair of distinct vertex search regions.
In addition all points in R; must lie within the extent of every image
joined by a seamline incident on ;.

Secondly, an edge search region, Ry, is defined around each
e;; € Es. R must be adjacent to, but disjoint from, R; and R;. Further-
more it must be continuous and lie entirely within the intersection
of the two images adjacent to the seamline. These search regions,
and the associated notation, are illustrated in Fig. 3. Note that in
the figure the vertex search regions are circular and the seamlines
and edge search regions are linear. Neither of these attributes are
required by our algorithm, however these are convenient choices
for implementation.

Our method then proceeds as follows:

1. We define a set of graphs to represent the task of finding opti-
mal seamlines (Section 2.1).

2. We then find a bottleneck point, b; in each edge search region,
R;; (Section 2.2).

3. Finally we optimise over each vertex search region, R;, to find
the location that gives the minimum total cost over the paths
to all adjacent bottlenecks (Section 2.3).

2.1. Graph construction

Having defined the search regions we need a way to evaluate
seamlines. This is done by forming a weighted graph, the cost
graph, GCu = (VCIJ’ECXI)' for each seamline e;. The vertices, edges,
and edge weights are defined with reference to the mosaic image
pixel locations, (x,y). The vertices of the graph are the corners of
the pixels; edges link corners which are vertically or horizontally
adjacent; and edges are weighted by the sum of image differences
at the pixels on either side of the edge.

More formally, each pixel location, (x,y) can be interpreted as
being a region in the image (the pixel itself), or a corner co-ordi-
nate, which we take to be the lower right corner as shown in
Fig. 4. Note that we use the usual image-based co-ordinates with
x increasing from left to right and y increasing from top to bottom,
and use corner-based locations so that the seamlines run between
rather than through pixels. We now define the vertex and edge sets
of G, as

Ve, ={x,y)I(x,y) € Ry}, (1)
ECij = {((X7y)7 (X - ]7y))|(x7y) (X - 17y) S VCU}U
{(xy), %y =1)Ixy), (x,y = 1) € V¢, }. (2)

Fig. 3. A vertex search region (dark grey) is defined for each junction/vertex (black
circles), and an edge search region (light grey) for each seamline/edge (black lines).
The vertices, edges, and search regions are labelled as shown on the right for the
edge from v to v,

y_'] .....

y -

y+1

x-1 x x#1

Fig. 4. Pixel locations (x,y) can be interpreted as a region in the image (shaded) or a
corner co-ordinate (circle).

This graph represents the possible paths through an edge search re-
gion Ry;. The graph’s vertex set is the set of pixels in the edge search
region, and each vertex is connected to its four immediate
neighbours.

The weights of the edges are computed from the two images, |
and J, connected by the seamline e;; as the sum of the image differ-
ences at the two pixels adjacent to the edge. For example, the
weight of the horizontal bold edge shown in Fig. 4 would be com-
puted as

w((x,y), x = 1,y)) =d(x,y) +d(x,y + 1), 3)

where d(x,y) is some non-negative function that computes a differ-
ence between pixel values at I(x,y) and J(x,y). Likewise, the weight
for a vertical edge would be given by

w((x.y), %y = 1)) =d(x,y) +d(x+ 1,y). (4)

A simple and common choice for d is the absolute difference in
intensity, but other metrics such as the Euclidean distance in some
colour space (such as RGB or HSV), or more advanced perceptual
difference measures could be used (Yu et al., 2012; Luo et al.,
2001). Factors other than pixel colour values could also be incorpo-
rated. For example, the cost function could be chosen to avoid pixels
near the edge of images (which suffer from greater lens distortion
and chromatic aberration), or to favour near-nadir views over obli-
que views.

We also define an expanded cost graph, GE., in the same manner
over the larger vertex set

Va_j IRHUR,‘UR}'. (5)

This expanded graph represents all possible paths from a point in a
vertex search region R;, passing through an edge search region Ry, to
some point in another vertex search region R;.

2.2. Bottleneck detection

Having defined the graphs above, we now consider each edge
search region, Ry, in turn. We want to find seams through this re-
gion that minimise the maximum weight edge in the cost graph
GCU' This minimax edge is the bottleneck of the seamline, and is
found as follows:

1. We begin with the expanded cost graph, Ggu.

2. We set to 0 the weight of all edges in Eaj \ Ec; (i.e. that are in R;
or R; rather than Rjy).

3. We find the minimal spanning tree (MST) of this graph. Prim’s
or Kruskal’s algorithms can be used for this task (Cheriton and
Tarjan, 1976).

4. The bottleneck, bj;, is now the maximum weight edge of the
path (there can be only one—see below) through the MST from
any point in R; to any point in R;.

Setting the weights to zero within the vertex search regions
means that there is no cost associated with moving within a vertex
search region, R;, to its boundary with an adjacent edge search re-
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gion Ry. At least one such boundary point must exist and be reach-
able from any point in R;, since both R; and R;; are continuous, and
Rjj is constructed so that it is adjacent to R;. This means that from
any point in R; we can move to any boundary point with R;; at no
cost, traverse R; to a boundary point with R; and then to any point
within R; at no cost. Once the MST is found, we can find a path from
any point in R; to any point in R;, let b;; be the edge on this path with
the maximum weight. Since this path lies within the MST it is a
minimax path (its maximum weight edge has the minimal possible
weight), and it is possible to move within R; and R; at no cost, so
any path from R; to R; must pass through an edge with at weight
at least as large as that of b;.

2.3. Junction location optimisation

Having identified the bottleneck points in each edge search
region, each junction can be optimised over the vertex search
regions. Consider a possible junction location, » € V;. Rather than
finding an optimal path from this vertex to each neighbouring ver-
tex search region, V;, we can restrict ourselves to finding a path to
the corresponding bottleneck, by, as illustrated in Fig. 5. The
remainder of the path to V; is found in a separate optimisation over
paths to b; from vertices v' € V;. The result of this is that we can
treat each junction location as a separate optimisation problem,
avoiding a combinatorial optimisation over the possible locations
for all junctions at once.

Suppose that the current vertex under consideration is V;, and is
linked by edges to V4, Vs, ..., V.. We wish to find an optimal junc-
tion position, 7; € V;, where there are good seamlines to each of
bi, bia, ..., bik.

Given any v € V; we can find a good seamline to a bottleneck b;;
as follows:

—_

. Begin with the expanded cost graph G;

2. Remove any edges e < Ec; such that w(e) > w(by). The resulting
graph is still connected (since it preserves the previously com-
puted MST over Ec;, and all edges in Eai \ Ec;).

3. Find (using Dijkstra’s algorithm (Dijkstra, 1959) or similar) the

shortest path from v to by;.

The resulting path avoids all edges with weight greater than the
bottleneck in the edge search region, and has the lowest total
weight of all such paths. We can compute the paths from the bot-
tleneck to all v € V; with a single application of Dijkstra’s algorithm,
giving the shortest paths to all candidate junction locations.

Let p(v,b;) be the shortest path from veV; to by and let
w(p(v,by)) be the total weight of this path (the sum of the weights
of its edges). We can then find an optimal junction location as

k
vo = arg miny " (p(v,by)). (6)
veV; =
[ ] [ ]
e o [ ] e o [ ]
. o . [u}
[ ] [ ]

Fig. 5. Having detected bottlenecks (black squares) in edge search regions, we can
change our search from possible paths between adjacent junctions (left) to
searching from each region to adjacent bottlenecks (right).

This approach works for internal edges—when both of the vertices
lie within the mosaiced region. At the boundaries of the mosaic,
however, seamlines extend to (or beyond) the edges of the input
images. One approach to deal with this is to replace the bottleneck
point with a point outside of the two images which meet at the
seamline. A shortest path can then be found from the junction ver-
tex to this target point, with no cost incurred for passing through
the region outside of the input images.

3. Experimental results

In the following experiments the initial seamline network is
computed as a Voronoi diagram of the camera locations projected
onto the ground plane. This favours views that are near-nadir, and
avoids oblique views wherever possible. Vertex search regions are
defined as circular regions of a fixed radius, r. To avoid adjacent re-
gions, Voronoi vertices located less that 2r+ 1 pixels apart are
merged before the search regions are defined. This merging en-
sures that the vertex search regions are disjoint, and that there is
at least 1 pixel space between them for the edge search regions.
Edge search regions are defined by a region of width r around a
straight line linking the centres of the vertex search regions.

While these do not in general guarantee that the image overlap
requirements are met, in the cases tested these are generally up-
held. In situations where the search region contains small areas
outside one of the imaged areas, the relevant edges are removed
so that seamlines are always placed in valid locations. This effec-
tively reduces the initially defined search regions to their largest
valid sub-regions. As mentioned previously, alternative methods
for initialisation could be used, such as Pan et al.’s (2009) AVDO
regions.

The algorithms have been implemented in C++ in Visual Studio
2010. OpenCV (Bradski, 2000) is used for image processing opera-
tions; QHull’s qvoronoi utility (Barber et al., 1996) is used for
Voronoi diagram computation; and Boost’s graph library (Siek
et al., 2002) for minimal spanning tree and shortest path estima-
tion. All experiments and timings were conducted under 64-bit
Windows 7 running on an iMac with a quad-core 2.7 GHz Intel
Core i5 processor and 8 GB of RAM. The current implementation
is single threaded.

3.1. Synthetic imagery

In order to test the algorithms under controlled conditions, a set
of synthetic test scenes are made. These are created from
1200 x 1200 pixel rectangles cut from a 5362 x 5357 orthomosaic
image of the city of Davis, California. This image is one of a set from
http://www?2.dcn.org/orgs/orthophotos/. The resulting tiles over-
lap by 200 pixels in each direction and are offset by a small random
shift to create misalignments in the mosaicing. Fig. 6 shows the
original image with the tile boundaries marked.

In order to illustrate the value of searching for optimal vertex
locations, three different methods are compared. All three place
the vertices within the search regions, and then find minimum cost
paths to all of the adjacent edge bottlenecks. The methods can then
be evaluated by the total cost of the paths from the selected vertex
location to the bottlenecks. The three methods are:

1. Place the vertex at the centre of the search region (no vertex

search).

2. Place the vertex at the location within the search region where
the difference between the overlapping images is minimal (Pan
et al., 2009).

. Place the vertex at the location within the search region where
the sum of the path costs is minimal (proposed method).

w
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Fig. 6. Tiles from an orthomosaic image of Davis, used to create synthetic test cases.
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Fig. 7. Total edge weight of the seamline network for the
varying degrees of random misalignment.
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Fig. 8. Percentage increase in edge weight across the seamline network for Centre
vertex placement and the method proposed by Pan et al. over the Optimal
placement for varying degrees of random misalignments.
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Original Centre

Pan et al.

Optimal

Fig. 9. Selected regions of (from left to right) the original image and the results of seamline finding using the Centre of the search region; the method of Pan et al. (2009); and

the proposed Optimal method to find seamlines.
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Fig. 10. Total edge weight of the seamline network with varying search region
radius.

We will refer to these as the Centre, Pan et al., and Optimal meth-
ods respectively.

Clearly the Optimal method will have the lowest score, but the
comparison with the Centre and Pan et al. methods serves to illus-

12

Graph construction ——
Shortest path ---x---
MST construction ---x---

Time (seconds)

Search Radius (pixels)

Fig. 11. Time required for graph operations with varying search region radius.

trate the value of the proposed approach. Fig. 7 shows the total
graph edge weights of the seamline network for different maxi-
mum offset distances. The offset in the x and y directions for each
trial was randomly chosen from a uniform distribution up to the
maximum offset, which ranged from 2 to 20 in steps of 2. The ra-
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Fig. 12. Memory required with varying search region radius.

dius for the vertex and edge search regions was fixed in this exper-
iment at r=50. A clear trend of increasing total edge weight (i.e.
more visible seamlines) with increasing offset is visible, which is
expected as greater offsets leads to more significant image
misalignment.

The other trend visible in Fig. 7 is that the vertex placement
heuristic suggested by Pan et al. (2009) gives similar results to
placing the vertices at the centres of the search regions, and both
are noticeably worse than the locations found by our method. This
can be seen more clearly by plotting the percentage increase in to-
tal edge weights over the Optimal vertex placement, as shown in
Fig. 8. This is computed as

% increase = 100% x w, (7)
Wo

where W is the total weight from the method being considered, and

W is the total weight with Optimal vertex placement. Pan et al.’s

method usually gives lower total path costs than Centre placement,

but not in all cases.

Fig. 14. Voronoi-based search regions for the Rangiora suburban dataset.

Qualitative evidence of the improvement given by the proposed
algorithm can be seen in Fig. 9. This figure shows regions of the
mosaic where there are significant visual differences between the
three methods’ results. The original image is shown for compari-
son, but the examples are taken from the trial where the input tiles
are offset by up to 20 pixels in the x and y directions, and so there is
often no perfect seamline to select. In example (a) of Fig. 9 none of
the methods are able to reconstruct the misaligned road correctly,
but Pan et al. and the Optimal method have reconstructed the
building more accurately than the Centre vertex placement. In
example (b) none of the methods has given an ideal reconstruction
of the building structure, while in example (c) the Centre weighted
approach has produced multiple images of the vehicle beside the
trees. In examples (d) and (e) both Centre placement and Pan
et al. have produced discontinuities in the building outlines which
are avoided by the Optimal vertex placement.

The trials in this example took on average 16.9 s, with little var-
iation in time with the degree of misalignment. There was little dif-
ference between the three method’s timings—Pan et al.’s (2009)
was 0.02 s slower than the Optimal method on average due to
slightly higher costs associated with vertex selection, while the

Fig. 13. Sample image from the Rangiora suburban dataset.
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Fig. 15. Final mosaic for the Rangiora data set using our optimal solution.

Centre Pan et al. Optimal

Fig. 16. Details from the mosaics for the Rangiora data set using (from left to right) the original Centre points, Pan et al.’s (2009) heuristic placement, and our Optimal

solution.

Centre method which avoids such computation completely was
slightly (0.04 s) faster. The largest amount of time (6.7 s) was used
constructing the graphs from the images, and rendering the final
mosaics took around 2.6 s in each case. Creating the Voronoi dia-
gram took 0.03 s, computing the minimal spanning tree 0.73s,
and finding optimal paths via Dijkstra’s Algorithm 1.2 s.

The quality of the paths also depends on the search radius, as
shown in Fig. 10. Increasing the search radius means that a wider
variety of paths can be explored, which generally decreases the
path weights. Note, however, that this decrease is not guaranteed.
A larger search region might mean that a lower weight bottleneck
can be chosen. In some cases this could lead to a higher total edge
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Fig. 17. Sample image from the Manawatu Gorge data set. Note the lighting
variation due to passing clouds, and the reprojection artefacts in the lower right of
the image.

weight due to a longer path in terms of number of edges. This
‘longer’ path, however, would have a lower maximum edge weight,
and so be less visually apparent.

Fig. 10 also shows diminishing returns in terms of reduced path
weight as the search radius increases. Increasing the search radius
also comes at a cost as the graphs become larger and so the time
and memory requirements of the processing increases. A larger va-
lue of r allows more paths to be explored, but never removes any
paths from consideration. As a result, increasing r will never de-
crease the quality of the paths (as measured by the minimax path
with the lowest total path cost), and a value of r large enough to
cover the entire overlap between an image pair will choose the
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350 | Render - 1
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o 250+ E
£
=
§ 200} E
®
2
£ 150 F A
Q
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-
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Number of Images
Fig. 19. Time required to process scenes with a varying number of images. Times

are shown for the entire process, image reading, graph construction, and mosaic
image rendering.
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Fig. 20. Memory required to process scenes with a varying number of images. The
memory needed to store the mosaic image is shown for comparison.

Fig. 18. Final mosaic for the Manawatu data set using Optimal vertex placement (Method 3).
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best path from among all possible paths. However, as r increases
the time and memory requirements increase proportionally, while
providing smaller and smaller increases in the mosaic quality.

The time required for constructing and searching the graphs de-
pends on the number of pixels, p, in the search regions. Graph con-
struction is O(p), while the algorithms to find the MST and shortest
paths are O(p log p). The number of pixels in the search region de-
pends on the length of the Voronoi edges and the width of the
search regions. Fig. 11 shows a plot of the time in seconds required
for graph construction, MST construction, and shortest path detec-
tion for varying search region radii. In these cases the Voronoi
edges are of a fixed length (1000 pixels), so p is proportional to r.

In this experiment the linear cost of graph construction domi-
nates the time requirements. This suggests that unless very large
search regions are used the actual cost will be roughly linear in
the search region size.

The memory requirements also depend on p, and therefore r.
The largest consumers of memory are the graph structures and
the mosaic image itself. The size of the graph structure, however,
is proportional to p, while the mosaic size is constant for a given
task. Fig. 12 shows the peak memory required and that used for
the mosaic image with varying search radius.

3.2. Rangiora suburban area

The first real example is a set of 54 images of Rangiora, a town-
ship north of Christchurch, New Zealand. The input orthoimages
are rendered at 0.5 m/pixel and show significant misalignments.
The final mosaic image is 1885 x 1216 pixels.

Note that the quality of these orthoimages, both in terms of
ground resolution and alignment, is significantly worse than typi-
cal results from image-based terrain model generation and align-
ment. These large errors, however, serve to illustrate the method
and highlight the differences between different approaches. A sam-
ple image from this data set is shown in Fig. 13.

An initial seamline network is made by starting with a Voronoi
tessellation and merging adjacent vertices. Search regions for ver-
tex and edge placement are then defined using the fixed radius
(r =20 pixels) as shown in Fig. 14.

Pan et al.’s (2009) method gave a 10.4% higher total path cost
across the mosaic than the Optimal method. Using the Centres
without any optimisation gave an 9.9% higher total path cost than
the Optimal vertex placement, and so was slightly better than Pan
et al.’s (2009) approach in this example. Fig. 15 shows the final mo-
saic produced by the proposed method.

The poor alignment and large intensity variation between
images means that none of the algorithms can produce an arte-
fact-free mosaic. A closer look at some of the regions, however,
shows that the use of Optimal vertex locations does provide for
qualitatively better seams in many cases, as well as giving a quan-
titative improvement. Examples of this are shown in Fig. 16. In the
first example, none of the methods has found an ideal seam for the
road to the bottom, but only the Optimal vertex placement has gi-
ven plausible structure for the two large buildings adjacent to the
field. In the second example, the building to the left is best recon-
structed by Optimal vertex placement.

The total processing time for this example was 14.9 s on aver-
age, with the method of Pan et al. (2009) being slightly (0.11 s)
slower and the Centre vertex placement slightly faster (0.03 s) than
the Optimal vertex placement algorithm. Graph construction took
9.2 s, and rendering the final mosaic took 1.5 s. The minimal span-
ning tree took 0.06 s to construct, while finding shortest paths took
0.23 s. Processing required 70.4 MB of memory, of which 8.7 MB
was used for the final mosaic.

3.3. Manawatu gorge

The final example presented here is a set of 80 images from the
Manawatu Gorge in the lower North Island of New Zealand. While
these images are well aligned, there are intensity variations due to
vignetting, lighting changes, and exposure differences. The terrain
in this regions is quite steep as well as having local height variation
due to tree lines and forest. As a result, the orthomosaics also show
some artefacts from the reprojection process, as shown in Fig. 17.
The final mosaic shows the good alignment of the images, but
the effects of vignetting can be seen in the river area, and the
change in exposure and lighting can be clearly seen across the
length of the mosaic. These effects can be corrected for, but are
not the focus of the current investigation.

The mosaics are rendered at a resolution of 0.2 m/pixel, and the
final mosaic image is 10,939 x 7620 pixels. A search radius of
r=15 was used. The final mosaics are visually very similar, and
the mosaic with Optimal vertex locations is shown in Fig. 18.

Although the mosaics produced using Central vertices and Pan
et al.’s (2009) method appear nearly identical to the Optimal vertex
locations, there are subtle differences. The total path length using
central vertices was 1.32% higher than the optimal solution, while
that found by Pan et al.’s method was 1.20% higher. Processing for
this example took 373 s on average, with the mosaic renderings
taking 155 s and graph construction 50.2 s. The Voronoi graph con-
struction, graph searches for shortest paths, and minimal spanning
trees look only 2.25 s in total. Reading the images into memory
took a significant proportion of the time in this case, at 280 s (note
that the graph construction and mosaic rendering times include
some image reading).

We also use this example to illustrate the change in processing
requirements with the number of images. The algorithms were run
on subsets of the images containing 20, 40, 60, and 80 images. The
time required for processing is shown in Fig. 19 along with the
times required for the most expensive parts of the process (graph
construction, image read time, and mosaic rendering for compari-
son). It can be seen that the time required is roughly linear in the
number of images, which is expected. The most time consuming
aspects of the algorithm are image reading, mosaic rendering,
and graph construction, which are linear in the number of images.
While other parts of the process (Voronoi diagram, MST extraction,
and shortest path computation) are O(n log n), n these processes
are fast in practice, and so do not contribute greatly to the running
time. Furthermore, n for the MST and shortest path estimation
problems is determined by the length of individual seamlines,
and so does not generally increase as additional images are added.

The memory requirements also vary with the number of
images, as shown in Fig. 20. The total memory required is signifi-
cantly greater than that needed to store the mosaic image. This
is almost all used by the graph structures, which are currently held
in memory throughout the process. For larger scenes the memory
requirements may exceed the available RAM on desktop machines.
In these cases the graph structures could easily be cached on disk,
since their construction processes are independent of one another,
and their use in determining optimal paths and vertex locations is
a local operation, using only a few graphs per vertex.

4. Conclusion

We have presented a method for Optimal vertex placement for
seamline network generation. These vertices produce lower cost
seamlines than either naive vertex placement at the centre of the
search region, or the method recently proposed by Pan et al.
(2009). The bottleneck detection method used is similar to that
of Chon et al. (2010), but uses minimum spanning trees rather than
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an iterative approach to determine the bottleneck location. The
examples shown here demonstrate a qualitative improvement in
mosaic quality, well as balancing the minimisation of the graph
path weights in terms of the highest single edge weight and the to-
tal path weight.

A naive approach to optimising the vertex locations could risk a
combinatorial optimisation problem, as altering one vertex’s posi-
tion could have flow-on effects through the entire network. We
avoid this problem by identifying bottlenecks between vertex
search regions, and the resulting method takes time linear in the
number of images to be mosaiced. Although some parts of the algo-
rithm are O(n log n) they are very fast in practice, and so the O(n)
terms with larger constant factors dominate. The storage require-
ments have also been shown to increase linearly with the number
of images.

The current implementation uses simple methods for seamline
initialisation (Voronoi diagrams), search region definition (con-
stant radius regions), and graph weight estimation (intensity dif-
ferences). The techniques presented here, however, do not
depend on any of these choices. More advanced algorithms could
be applied in any of these areas, such as the graph weighting strat-
egy proposed by Yu et al. (2012), which includes aspects such as
texture, feature saliency, and location relative to the nadir point
in the graph weighting. Other tools for improving mosaicing, such
as exposure compensation and moving object removal (Uyttenda-
ele et al., 2001; Mills and Dudek, 2009) could also be applied to im-
prove the final orthomosaic.
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