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Abstract

We propose a novel method for the multi-view recon-
struction problem.  Surfaces which do not have direct
support in the input 3D point cloud and hence need not
be photo-consistent but represent real parts of the scene
(e.g. low-textured walls, windows, cars) are important for
achieving complete reconstructions. We augmented the ex-
isting Labatut CGF 2009 method with the ability to cope
with these difficult surfaces just by changing the t-edge
weights in the construction of surfaces by a minimal s-t
cut. Our method uses Visual-Hull to reconstruct the dif-
ficult surfaces which are not sampled densely enough by
the input 3D point cloud. We demonstrate importance of
these surfaces on several real-world data sets. We com-
pare our improvement to our implementation of the Labatut
CGF 2009 method and show that our method can consid-
erably better reconstruct difficult surfaces while preserving
thin structures and details in the same quality and compu-
tational time .

1. Introduction

Recent approaches to multi-view reconstruction [21, 4,
22, 14,5, 9, 8] attain a degree of accuracy and completeness
comparable to laser scans [18, 20]. Yet, producing complete
reconstructions of outdoor and complicated scenes is still
an open problem. Most of the state-of-the art multi-view
reconstruction methods produce a 3D point cloud, which is
later used to compute a mesh representing the 3D world.
There are several approaches to computing the point cloud,
such as plane-sweeping based [6], stereo based [19], or
growing based [8] methods. We are focusing on the multi-
view reconstruction from a given 3D point cloud and cam-
eras producing it. We further assume that for every point in
the cloud we have the list of cameras that should see it.
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Figure 1. Results for the ’bottle’ data set. (a) Input image, (b)
input 3D point cloud, (c) results using our implementation of [15],
(d) the technique presented in this work reconstructs weakly-
supported surfaces (the bottle) better.

Surfaces which do not have direct support in the input 3D
point cloud and hence do not have to be photo-consistent
with it but represent real surfaces in the scene (e.g. low-
textured walls, windows, cars, ground planes) are important
for achieving complete reconstructions. Such surfaces may
be transparent, highly reflective, lacking textures or in the
case of ground planes they can be occluded by moving ob-
jects like people and cars. The PET bottle shown in Fig-
ure 1(a) is an example. Another frequent example would
be ground plane in tourist photo collections which is often
blurred since the cameras are mostly focused on houses and
people above the ground. It is almost impossible to recon-
struct such difficult surfaces directly using standard stereo
matching techniques which are based on photo-consistency
measures [21, 4, 22, 14, 5, 9, 8]. Difficult surfaces can co-
exist with highly textured easy surfaces which can be quite
accurately reconstructed with the standard techniques. We
consider a surface densely sampled by the input 3D points
as an easy surface. Figure 2 shows a highly-supported-free-



space cone (light blue triangles with dark blue shape out-
line), it is the part of the space which is between an easy
surface and its associated camera. The idea of the Visual-
Hull [16] method is that the silhouette of objects splits the
image into foreground and background. The silhouette, to-
gether with the camera centre c, defines the silhouette cone
which contains the object. Given N silhouette images, the
scene can be restricted to the intersection of the correspond-
ing cones. The another explanation is that the result is the
complement to the union of the complements to the silhou-
ette cones.

Motivated by the idea of the Visual-Hull, we define a
weakly-supported surface as a specific part of a difficult sur-
face, see Figure 2. The weakly-supported surfaces (green)
are the surfaces of real objects which are weakly sampled
by the input 3D points and are close to the border of the
union of the highly-supported-free-space cones, i.e. close to
highly-supported-free-space boundary. Our aim is to recon-
struct them. We focus on creating an initial surface which
can be later refined as in [21] to achieve excellent highly
detailed results.

Similarly to [15], our approach casts the surface
reconstruction as an energy minimisation problem that
can be globally optimised by computing a minimum s-t
cut in an s-t graph. The new element in our approach is
in computing the free space support, then detecting the
highly-supported-free-space boundary and finally changing
the t-weights of the graph to reconstruct even the weakly-
supported surfaces. We demonstrate the performance of
our method in synthetic example (section 3.3) and real
experiments (section 5). Our software is available online at
http://ptak.felk.cvut.cz/sfmservice/methods/jancosek/cvpr-
2011/index.html.

Related work. Visual-hull was introduced by Laurentini
in [16]. This technique relies on the ability to clearly sepa-
rate objects from the background and therefore is not useful
for reconstructing outdoor scenes.

Space carving [13] produces an approximate reconstruc-
tion called Photo-Hull, which is, under very strict condi-
tions, guaranteed to subsume all other photo-consistent re-
constructions. The assumptions are so strict that the method
is useless for reconstructing outdoor scenes. It also does not
reconstruct weakly-supported surfaces well since all non-
photo-consistent volume is carved out. Photo-Flux was re-
cently introduced in [3]. It is closely related to the Photo-
Hull but allows to recover finer shape details without over-
smoothing them while still handling noise robustly. In [17]
they present an approach to multi-view image-based 3D re-
construction by statistically inversing the ray-tracing based
image generation process. All these methods ([13, 3, 17])
use volumetric representation of the space. While the num-
ber of voxels depends on the resolution of the volume cubi-
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Figure 2. Weakly-supported surfaces. A highly-supported-free-
space is the part of the space which is between the surfaces
densely sampled by the input 3D points and the associated cam-
eras. Weakly-supported surfaces (green) are the surfaces of the
real object which are weakly sampled by the input 3D points and
are close to the border of the union of the highly-supported-free-
space cones.

cally theirs computational and memory cost quickly reaches
computer limits. Therefore the volumetric methods are
suited for reconstruction of small compact objects and are
not scalable.

The latest state-of-the-art methods [8, 7] are focused on
producing noise free oriented point clouds to generate 3D
mesh using [12]. This approach is rather conservative and
tends to reconstruct only those surfaces which are strongly
supported by data. It leaves the space free where the support
is not sufficient.

We build on the state-of-the art global method to 3D re-
construction [15]. It is based on the minimal s-t cut of a
graph derived from the Delaunay tetrahedralization of the
input 3D point cloud in order to label tetrahedra as inside or
outside. This approach uses a strong geometrical prior to re-
construct many surfaces well but, unfortunately, it does not
construct the weakly-supported surfaces well. This imper-
fection of [15] is illustrated in Figure 1(c), where the bottle
has not been reconstructed. It shows how important it is to
deal correctly with weakly supported surfaces. Figure 3(d)
shows another example where the ground plane is missing
completely.

2. The Base-line method

We build on work [15] which we call base-line method.
Let us assume that we have a Delaunay tetrahedralization of
a point cloud where a set of cameras is associated to each
point. Work [15] considers the surface reconstruction prob-
lem as a binary labelling problem. Tetrahedra are labelled
as being inside or outside. The reconstructed surface is the
union of oriented faces (triangles) of the Delaunay tetrahe-
dralization which is guaranteed to bound a volume, i.e. it is
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Figure 3. Results for the ’strecha’ data set. (a) Input image, (b)
input 3D point cloud, (c) the free-space-support of the tetrahedra
on a cut of the tetrahedralization with a plane using a,;s = 32
as in the base-line method, (e), (g) the same but (e) using avis(p)
instead and (g) our method. The free-space-support is different.
(d),(f) are reconstructions of our implementation of the base-line
method, (d) using avis = 32, (f) using awis(p). The results are
similar. (h) is the result using our method. (d), (f) demonstrate
that the introduction of au,s(p) into the base-line method is not
sufficient to reconstruct weakly-supported ground plane. (h), (g)
shows that our method, reconstructs the weakly-supported ground
plane. The jet-color-map was used for the range (0, 1000), where
the blue color corresponds to 0 and the dark red color corresponds
to 1000.

watertight and self non-intersecting. The surface separating
the empty space from the full space is found as a minimal
s-t cut of the following directed graph. The nodes of the
graph correspond to the Delaunay tetrahedra and directed
edges correspond to the oriented triangles between adjacent
tetrahedra. Let us consider a face f between adjacent tetra-
hedra a and b viewed from the side of the tetrahedron a. The
face f is represented in the graph by the edge oriented from
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the node a to the node b. The graph is augmented with an
additional source (representing the outside) and a sink (rep-
resenting the inside) nodes and with edges from the source
to each node (s-edges) and from each node to the sink (t-
edges). Finally, the directed edges of the cut (going from
the node labeled as source to the node labeled as sink) cor-
respond to triangles on the reconstructed oriented surface.

Figure 4 shows how the weights of the edges in the graph
are computed. Let us consider a point p and an associated
camera centre c. Let us denote all tetrahedra (resp. faces),
which intersect the line segment (¢, p + ‘Z —;0) ordered by
the distance of the intersection point to the ¢ in ascending
order, as crossing-tetrahedra (resp. faces).

The weights of all edges of the s-t graph are initially set
to zero. For each point p and camera centre c assigned to
p, weights of the edges of the crossing-faces (which are
intersected by the line segment mentioned above) are in-
creased by a constant value «,;s. The value of infinity is
assigned to the first crossing-tetrahedron (tetrahedron ¢ in
Figure 4). Finally, the «,;s value is added to the t-edge of
the last crossing-tetrahedron (see Figure 4). See [15] for
more details.

The weight of an oriented edge of the s-t graph is deter-
mined by the number of camera-point pairs for which the
point is occluded by the face corresponding to the edge in
the camera. A t-edge weight of a node is determined by the
number of camera-point pairs for which the point occludes
the corresponding tetrahedron in the cameras up to the depth
o behind the point: in other words the point projects to the
area of the projection of the tetrahedron in the camera.

The free-space-support of the tetrahedron is the sum of
weights of all incoming edges to the node corresponding
to the tetrahedron. The free-space-support is related to the
total number of pairs (camera, point) for which the point is
occluded by the tetrahedron in the camera.

We have to point out that we are using different ov,;s
value for each 3D point p of the tetrahedrazliation in our
method while in the base-line method the «,,;, is set to a
constant. We denote it as a;s(p). The Delaunay tetrahe-
dralization points are not the points of the input 3D point
cloud X. Let us denote the number of cameras associated
with a point 2 € X from the input 3D point cloud as N.(x).
In our method we group the points (x € X) from the input
3D point cloud into the points (p € T') of the tetrahedral-
ization such that S(p) C X within a distance -y surrounding
of the p is not empty and Vp;,p; € T |p; — p;| > 7. The
Quyis(p) is as follows.

Qyis (p) = Z

z€S(p

Ne(x) ey
)

The «,is(p) is not the same as N.(p), because more
points associated with the same camera can be involved in
the cv,;5(p). Therefore the value a,;s(p) should be small for



OUTSIDE

c line of sight

sensor/emitter

Figure 4. Illustration of the s-t graph based surface reconstruc-
tion. (Figure 4 (b) in [15]). Symbol f, denotes the first tetrahe-
dron 74 which contains point p and is next to the nearest crossing-
face of the line segment (¢, p). We denote the last tetrahedron g
which is in the ¢ distance from the point p crossing the directed
line (p,p — c) as I;,.

a noisy point p because noisy points are usually created by
a small number of cameras and have no other points within
their y-neighbourhood. In another words the good situation
is when the point is supported from more cameras or from
more 3D points (from at least one camera). See section 4.1
for more details.

Figure 3 shows the influence of the «,;s(p) on compu-
tation the free-space-support values of the tetrahedra. Fig-
ure 3 (c) shows the free-space-support values of the tetra-
hedra on a cut of the tetrahedralization with a plane using
Quyis = 32 as in the base-line method and (e) using ;s (p).
The free-space-support is different. We refer the reader to
the next sections to see the reason for using cv,;s(p).

The problem of the base-line method is in that the for-
mulation is not sufficient for obtaining weakly-supported
surfaces. Figure 2 illustrates a situation when weakly-
supported surfaces are present. This situation is demon-
strated by a real world experiment in Figure 1. Fig-
ure 1(c) shows that the base-line method does not recon-
struct weakly-supported surfaces (the bottle). Note that for
relatively densely sampled surfaces, where the amount of
noise is significantly lower than the density of surface sam-
ples, the base-line method works perfectly and our method
gives exactly the same results.

3. Our approach

Section 3.1 describes why there should be a large free-
space-support jump on the real surface. Section 3.2 intro-
duces the weakly-supported surfaces t-weight assumption.
While we cannot exactly prove that our approach works in
general we prove that our method solves the problem on a
synthetic example, (shown by Figure 6), section 3.3. We
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Figure 5. Weakly-supported surfaces t-weight example. The
black face occludes 3 points in 3 cameras. Therefore the corre-
sponding edge has weight ws = 9. The corresponding tetrahe-
dron v, which is nearest to the cameras is behind just one point,
which has 3 cameras associated (and ray defined by the camera
centre and the point intersects v). Hence the corresponding t-edge
has weight w; = 3. Furthermore, each point, which is occluded
by the black face in c associated cameras, increases the ws by the
number ¢ while w; remains unchanged.

also experimentally observed that the example is represen-
tative and therefore our method should work in general.

3.1. Large free-space-support jump

The free-space-support of a tetrahedron which is near or
lies on the real surface and should be labeled as outside
should be much larger than free-space-support of a nearby
tetrahedron which should be labeled as inside. This holds
for surfaces which are densely sampled by the input point
cloud as well as for weakly-supported surfaces. Figure 3(e)
shows that it indeed holds. The free-space-support jump is
large on both the densely sampled facade as well as on the
weakly-supported ground plane.

3.2. Weakly-supported surfaces t-weight assump-
tion

In the base-line method formulation, t-edge weights for
tetrahedra, which are near or lie on the real but weakly-
supported-surface and should be labeled as inside, are much
smaller than the free-space-supports of the corresponding
nodes. Let us assume that o = 0 and denote a tetrahedron
which lies on the real but weakly-supported-surface, and
which should be labeled as inside, by v. In this situation,
the t-edge weight w, of the tetrahedron v depends on the
number of cameras associated with the four points of the
tetrahedron v. The free-space-support w; of the tetrahedron
v depends on the number of cameras of all points which are
occluded (in the cameras) by the tetrahedron v. Therefore,
even a small number of wrongly reconstructed points makes
the value wy much greater than the value w; (see Figure 5).
While we assumed o = 0 the conclusion holds for small
o, too. The parameter o can not be set to large value (see

[15]).
3.3. Synthetic example

The top of Figure 6(a), (b) illustrates the situation when
a weakly-supported-surface appears as a part of the tetra-
hedralization. The bottom represents the corresponding



graph. The middle represents the weights for the corre-
sponding edges. Weights for edges between nodes are
light blue and weights for t-edges are dark brown. There
is a large free-space-support jump on the surface; wsg is
much higher than wg7 (wzg). In this example there holds:
00 > Wiz > ... > Wse > We7 +tg > wWrg + tg + L7 >
wgg +te +t7 +1g < tg+t7 +tg+tg and wsg > ws7. The
minimal cut in this synthetic example is the cut illustrated
by the red lines. The labelling for the minimal cut does not
correspond to the correct solution.

The weakly-supported surfaces t-weight assumption
holds; wg7 is much higher than t; and all other t; are
approximately same as t;, Figure 6(a). This causes that
the minimal cut will be further from the correct surface.
This effect is demonstrated by the real experiment in Fig-
ure 3. The free-space-support jump is large near the weakly-
supported ground plane, 3(c),(e) but using «,;s(p) alone
in the base-line method is not sufficient to reconstruct the
weakly-supported-ground plane, Figure 3(f). Therefore, in
the place of a large jump, we multiply ¢; by a conviniently
chosen z so that the cut described in Figure 6(b) becomes
minimal and we get the correct labelling. One can see that
if we set z to wsg — wrg, then we will achieve the correct
solution. Our approach is sequential. We first compute all
weights in the same way as the base-line approach. Then
we search for all large jumps and multiply the correspond-
ing t-edge weights as demonstrated in the example. This
is supported experimentally in Figure 3(h) by the fact that
our method only changes weights of t-edges as described by
the synthetic example and it is sufficient to reconstruct the
weakly-supported-ground plane.

It is clear that in situation where the amount of noise is
significantly lower than the density of surface samples, t-
edges weights of the tetrahedra which are in the o distance
to the real surface and are in the real object are greater than
the free-space-supports of the corresponding nodes. Other-
wise the base-line method would not give any result. There-
fore in this situation our method gives exactly the same re-
sult.

4. Implementation details

Our multi-view reconstruction pipeline is divided into
two modules. The first module creates a depth map for each
camera. To compute the depth-maps, we reimplemented
the approach to plane-sweeping proposed in [10]. A 3D
point cloud can be computed for each depth-map using a
related camera matrix. We collect all 3D point clouds from
all depth-maps into one 3D point cloud, where the cam-
era from which the point is computed is related to each 3D
point. This point cloud is used as the input to the second
module, which constructs a triangulated surface.

Initially, we create the tetrahedralization from the input
point cloud using the Computational Geometry Algorithms
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Figure 6. Representative example. Light blue: source label (free
space), brown: sink label (full space). (a,b) top: a part of the tri-
angulation, bottom: the associated s-t graph, middle: the weights
of the associated edges. (a) Minimal cut for weights computed by
the base-line approach leads to a wrong solution (b) Multiplying
t7 by (wse — wrs) leads to the correct solution.

Library (CGAL)? [1], described in section 4.1. Then we
build the s-t graph as described in section 2. Next we com-
pute the weights of all edges as described in the section 4.2.
Finally, we solve the minimal s-t cut problem using the soft-
ware® described in [2].

4.1. Creating tetrahedralization

The tetrahedralization is created online. When adding a
new point x from the point cloud we first check if there is a
3D point p of the actual tetrahedralization within a distance
v from z. If there is such a point then we do not add z to the
tetrahedralization but associate the camera with the nearest
point p and increase c,;s(p) by 1. Otherwise we add the
point p to the tetrahedralization, associate the camera with
it, and initialize an cv,;5(p) to 1. The approach is similar to

Zhttp://www.cgal.org/
3http://www.adastral.ucl.ac.uk/vladkolm/ software.html



[14]. As a consequence, each point has a set of cameras and
the a5 (p) value associated.

4.2. Setting up the weights

We denote the first tetrahedron which contains point p
and is related to the nearest crossing-face of the line seg-
ment (c,p) as f;. We denote the last tetrahedron which is
within distance ¢ from the point p crossing the directed line
(p,p — c) as I5. See Figure 4.

Our approach to setting up the weights of the graph is
sequential. In the first step, we compute all weights of
all edges except weights of the t-edges in exactly the same
way as in the base-line method but instead of a,,;s we use
awis(p). In the second step, we compute weights of the t-
edges which are updated in a similar way to the base-line
method, but with different weights. For each point p and
each associated camera ¢ we take the free-space-support
e(f5) of the f5 tetrahedron and the free-space-support e(l5)
of the [5, tetrahedron. And we add the value ¢(c, p)

c eyy €4y) c
O‘UiS(p)(e(fp) - e(lp)) e(J¢) <N e(fp) <pg
e(l?

Wy 20V ells) 2 0

2)

to the t-edge of the [}, tetrahedron. The parameter 4 de-

termines that there is a large jump i.e. when there should

be a surface. We use very conservative approach and set
0 = 0.5, 8 = 1000 in all of our experiments.

t(e,p) =

Qyis (p)

4.3. Performance discussion

The base-line algorithm (i) iterates through n points of
tetrahedra. For each ‘" point it then (ii) iterates through
¢; associated cameras and for each j*® camera it then (iii)
iterates through the crossing-tetrahedra of the ray from the
4t camera centre up to the o depth behind the i*" point. We
denote the average number of each of these three iteration
steps as n, = n,n. and n;. Therefore, the computation
processing time of the overall graph weights is O(n,n.n;).

In the first step of our algorithm (section 4.2), we do the
same number of iterations, but also remember for each point
p and camera c the last tetrahedron [7. The speed is the same
as the speed of the base-line algorithm O(nynen;). In the
second step (section 4.2), our algorithm iterates through n
points of tetrahedralization. For each i'" point it iterates
through ¢; associated cameras and for each j*" camera it
just update the t-weight of the remembered [, tetrahedron
according to equation 2. The number of iterations in the
second step is O(n,n.). It is much faster than the first step
because it does not need to do the final iteration (iii) through
tetrahedra for each ray. According to n; in the table 1, the
second step is several hundred times faster than the first
one. This shows that the speed of our approach is almost
the same as the speed of the base-line approach. Table 2
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dataset | #c [ne [ np | #¢ [ ni |
castle 30 | 3 | 1,2M | 7,6M | 255
dragon | 114 | 4 3M 20M | 538

Table 1. Performance data for different data sets. #. is the
number of input cameras, n. is the average number of cameras
associated with a point, n, is the number of points in the tratra-
hedralization, #; is the number of tetrahedra in the tratrahedral-
ization, n; is the average number of tetrahedra crossing the line
segment from a camera to the o depth behind a point (for each
pair (point,associated camera)).

’ data set \ i \ to, \ to, ‘
castle 30| 30 | 2
dragon | 90 | 91 3

Table 2. Running times of different parts of the algorithm for
different data sets. ¢; is the time of filling the graph using our
implementation of the base-line method in minutes, ¢,, is the time
of the first iteration of our method and ¢,,, is the time of the second
one (in minutes).

shows the running times of different parts of the algorithm
for different data sets.

5. Results

All experiments are computed on Intel Core i7 CPU ma-
chine with nVidia 285GTX graphics card, 12GB RAM and
64-bit Windows 7 OS. We use four different calibrated im-
age sets (data sets) in this paper: bottle, strecha, castle and
dragon. The bottle data set contains 24 1950 x 1307 images.
The street-view data set “strecha’ was provided by Christo-
pher Strecha and contains 1514 2000 x 1500 images. We
compute the depth map for each of the 1500 images but to
reconstruct different parts of the city we choose 3D points
from different volumes parts defined by boxes in order to fit
into memory. The castle data set is the benchmark data set
[20] and contains 30 3072 x 2048. The dragon data set was
used in [10] and contains 114 1936 x 1296 images. We use
the same «,,;s and o as in the base-line method. The param-
eter ¢ is set to 0.5 in all of our experiments. The parameter
v is set in terms of the two points re-projection pixels dis-
tance to a value in the range (2, 10) in order to be able to fit
the data into memory.

We have to note that as our method produces more com-
plete scenes than the base-line method but it tends to pro-
duce more hallucinations. We use the approach described
in [11] to remove them.

Figures 1, 3, 8, 9, 10, 7 demonstrate that our method re-
constructs weakly-supported surfaces better than the base-
line method. The weakly-supported surface in the Fig-
ure 1(a) is the bottle. The weakly-supported-surface in the
date-sets 3, 8, 9, 10 is mostly the ground plane.
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Figure 7. Results for the ’dragon’ data set. (a) Input image, (b)
input 3D point cloud, (c¢) result of our implementation of the base-
line method, (d) result using our method. Our method reconstructs
densely sampled surfaces at the same level of detail as the base-
line method but also reconstructs weakly-supported surfaces i.e.
water, and ladles.

Figure 7 demonstrates that our method reconstructs
densely sampled surfaces at the same level of detail as the
base-line method. Additionally, our method reconstructed
weakly-supported surfaces i.e. water, and ladles. Note that
the ladles were not at the same place in all images. Fig-
ure 10 presents results on the castle data set from the stan-
dard Strecha’s [20] evaluation database. The histograms
(c), (d) show that our reconstruction achieves almost the
same quality as the method [21] which uses an additional
mesh refinement step. Figure 10 (e), (f) shows that, un-
like the base-line method (f), our method (e) can recon-
struct weakly supported ground planes. Additionally, the
histograms (c), (d) show that our reconstructions are more
or less on the same level at 20 and 30 as the base-line
method which means that our method produces results on
the same level of detail as the base-line method.

6. Conclusion

We have presented a new multi-view reconstruction
method. First, a depth-map for each camera is computed
and a 3D point cloud is generated from the depth-maps. The
Delaunay tetrahedralization of the 3D point cloud is then
generated. The aim is to label the tetrahedra as empty or
occupied by finding the minimal s-t cut of a correspond-
ing graph. Our modification of the graph weights leads
to reconstructing weakly-supported surfaces robustly while
achieving the same quality on the other surfaces. We have
shown that the speed of our method is almost the same as
the speed of our implementation of the base-line method.
We have demonstrated that our method achieves better re-
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(b)

Figure 8. Results for the ’strecha’ data set. (a) reconstruction us-
ing our implementation of the base-line approach, (b) reconstruc-
tion using our approach. Weakly-supported surfaces are better re-
constructed using our approach than by base-line approach.

sults on several real data sets.
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