Функциональное программирование Лекция 3. Просто типизированное лямбда-исчисление

Денис Николаевич Москвин

Computer Science Center Новосибирск

03.02.2020

План лекции

- Понятие типа
- 2 Просто типизированное λ-исчисление
- $oldsymbol{3}$ Формализм систем $\lambda_{
 ightarrow}$
- f 4 Свойства $\lambda_{
 ightarrow}$

План лекции

- 1 Понятие типа
- 2 Просто типизированное λ-исчисление
- \odot Формализм систем λ_{\rightarrow}
- Фенерати (При предагами) предагами (При

Что такое типы?

Система типов — это гибко управляемый синтаксический метод доказательства отсутствия в программе определенных видов поведения при помощи классификации выражений языка по разновидностям вычисляемых ими значений.

Бенджамин Пирс

- В λ-исчислении:
 - выражения λ-термы;
 - вычисление их редукция;
 - значения (WH)NF.
- Типы *синтаксические* конструкции, приписываемые термам по определённым правилам:

M:σ

Для чего нужны типы?

• Типы дают частичную спецификацию

$$f\!:\!\mathbb{N}\to\mathbb{N} \qquad \quad g\!:\!(\forall\,n\!:\!\mathbb{N}.\,\exists m\!:\!\mathbb{N}.\,m\leqslant n)$$

 Правильно типизированные программы не могут «сломаться». Робин Милнер (1978)

$$M: \sigma \wedge M \rightarrow \nu \Rightarrow \nu: \sigma$$

- Типизированные программы всегда завершаются. (это не всегда так :)
- Проверка типов отлавливает простые ошибки.

Стрелочный тип в функциональных языках

• В большинстве систем типизации тождественной функции $\mathbf{I} \equiv \lambda \, x. \, x$ может быть приписан тип lpha o lpha

$$I: \alpha \rightarrow \alpha$$

- ullet В общем случае lpha o eta является типом функции из lpha в eta.
- Если имеется у типа α , являющийся аргументом функции I, то выражение I у тоже имеет тип α .
- Гипотезы о типе переменных записывают в контексте

$$y: \alpha \vdash (\mathbf{I} y) : \alpha$$

Примеры (на некотором условном языке)

 $\mathtt{sin}:\mathtt{Double}\to\mathtt{Double}$

 $\mathtt{length}:\mathtt{Array} o \mathtt{Int}$

Системы Карри и Чёрча

В λ -исчислении с типами выделяют два семейства систем типов.

Системы в стиле Карри

Термы те же, что и в бестиповой теории. Каждый терм обладает множеством различных типов (пустое, одно- или многоэлементное, бесконечное).

Системы в стиле Чёрча

Термы — аннотированные версии бестиповых термов. Каждый терм имеет тип (обычно уникальный), выводимый из способа, которым терм аннотирован.

Два взгляда на системы типов

Подход программиста

Термы интерпретируются как программы, а типы — как их частичные спецификации.

- Системы в стиле Карри: неявная типизация (например, Haskell, Ocaml).
- Системы в стиле Чёрча: явная типизация (большинство типизированных языков).

Логический подход

Типы интерпретируются как высказывания, а термы — как их доказательства.

Связь между «вычислительными» и логическими системами называют *соответствием Карри-Говарда*.

План лекции

- Понятие типа
- 2 Просто типизированное λ-исчисление
- \odot Формализм систем λ_{\rightarrow}
- 4 Свойства λ_

Просто типизированное λ -исчисление

Самая простая система — это *просто типизированное* λ -*исчисление* (λ $_{\rightarrow}$ или Simple Type Theory (STT)).

Определение

Множество типов $\mathbb T$ системы $\lambda_{
ightarrow}$ определяется индуктивно:

$$lpha,eta,\ldots\in\mathbb{T}$$
 (переменные типа)
$$\sigma, au\in\mathbb{T}\Rightarrow(\sigma o au)\in\mathbb{T}$$
 (типы пространства функций)

• В абстрактном синтаксисе:

$$\mathbb{T} ::= \mathbb{V} \mid (\mathbb{T} \to \mathbb{T})$$

Здесь $\mathbb{V} = \{\alpha, \beta, \ldots\}$ — множество типовых переменных.

• Соглашение: α, β, γ используем для типовых переменных, а σ, τ, ρ — для произвольных типов.

Соглашения и примеры

Стрелка *правоассоциативна*: если $\sigma_1,\dots,\sigma_n\in\mathbb{T}$, то

$$\sigma_1 \to \sigma_2 \to \ldots \to \sigma_n \ \equiv \ (\sigma_1 \to (\sigma_2 \to \ldots \to (\sigma_{n-1} \to \sigma_n) \ldots))$$

$$(\alpha \to \beta) \equiv \alpha \to \beta$$

$$(\alpha \to (\beta \to \gamma)) \equiv \alpha \to \beta \to \gamma$$

$$((\alpha \to \beta) \to \gamma) \equiv (\alpha \to \beta) \to \gamma$$

$$((\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))) \equiv$$

$$(\alpha \to \beta) \to (\beta \to \gamma) \to \alpha \to \gamma$$

$$((\alpha \to \beta) \to (((\alpha \to \beta) \to \beta) \to \beta)) \equiv$$

$$(\alpha \to \beta) \to ((\alpha \to \beta) \to \beta) \to \beta$$

Всякий тип в $\lambda_{
ightarrow}$ может быть записан в виде

$$\sigma_1 \to \sigma_2 \to \ldots \to \sigma_n \to \alpha$$

Как приписать тип терму? (переменные и аппликация)

• Если терм *переменная* — как угодно:

$$x: \alpha$$

$$y: \alpha \to \beta$$

$$z: (\alpha \to \beta) \to ((\alpha \to \beta) \to \beta) \to \beta$$

- Если терм *аппликация* М N, то
 - M должно быть функцией, то есть иметь стрелочный тип $M: \sigma \to \tau;$
 - N должно быть «подходящим» аргументом, то есть иметь тип N : σ ;
 - вся аппликация при этом получит тип результата функции:
 M N : т.

$$x:\alpha, y:\alpha \to \beta$$
 $\vdash yx:\beta$
 $x:\alpha, y:\alpha \to \beta, z:\beta \to \gamma \vdash z(yx):\gamma$

A какие должны иметь типы x и y, чтобы $x(y,x):\gamma?$

Как приписать тип терму? (абстракция)

- Если терм *абстракция* λх. М, то
 - его тип должен быть стрелочным $\lambda x. M : \sigma \to \tau;$
 - тип аргумента х должен быть σ;
 - ullet тип тела абстракции M должен быть au.
- Например, для $x : \alpha$ имеем $\lambda x . x : \alpha \to \alpha$
- Но писать $x: \alpha \vdash \lambda x. \ x: \alpha \to \alpha$ плохая идея! Контекст глобален, а переменная x локальна, и ее имя может использоваться многократно в разных областях видимости.
- Можно ли как-то указать, что переменная x имеет тип α ?
 - Если не указать, то допустимо и $\lambda x. \ x: \beta \to \beta$ и даже $\lambda x. \ x: (\alpha \to \beta) \to \alpha \to \beta$ стиль Карри.
 - Если указать λx^{α} . $x : \alpha \to \alpha$, то тип терма определяется однозначно стиль Чёрча.
- Типизируйте по Чёрчу: $\lambda x^{?}$. $\lambda y^{?}$. x(yx): ?

Как приписать тип терму? (ассоциативность)

Правила ассоциативности для типов (вправо), аппликации (влево) и абстракции (вправо) хорошо согласованы друг с другом.

В предположении $M:\alpha, N:\beta, P:\gamma, Q:\gamma$

$$FM: \beta \rightarrow (\gamma \rightarrow \delta)$$

 $F: \alpha \to (\beta \to (\gamma \to \delta))$

$$(FM) N : \gamma \to \delta$$

$$(FM) N) P : \delta$$

$$\begin{array}{l} \lambda y^{\beta}.\,Q:\alpha\to\gamma\\ \lambda x^{\alpha}.\,(\lambda y^{\beta}.\,Q):\alpha\to(\beta\to\gamma) \end{array}$$

Зелёные скобки необязательны и обычно опускаются.

План лекции

- Понятие типа
- 2 Просто типизированное λ-исчисление
- lacksquare Формализм систем $\lambda_{
 ightarrow}$
- 4 Свойства λ_

Предтермы системы $\lambda_{ ightarrow}$ а ля Карри

Определение

Множество *предтермов* (или *псевдотермов*) Λ строится из переменных из $V = \{x, y, z, \ldots\}$ с помощью аппликации и абстракции:

$$\begin{array}{ccc} x \in V & \Rightarrow & x \in \Lambda \\ M, N \in \Lambda & \Rightarrow & (M N) \in \Lambda \\ M \in \Lambda, x \in V & \Rightarrow & (\lambda x. \, M) \in \Lambda \end{array}$$

• В абстрактном синтаксисе

$$\Lambda ::= V | (\Lambda \Lambda) | (\lambda V. \Lambda)$$

• Предтермы системы в стиле Карри — это в точности термы бестипового λ -исчисления.

Предермы системы $\lambda_{ ightarrow}$ а ля Чёрч

Определение

Множество *предтермов* $\Lambda_{\mathbb{T}}$ строится из переменных из $V = \{x,y,z,\ldots\}$ с помощью аппликации и аннотированной типами абстракции:

$$\begin{array}{ccc} x \in V & \Rightarrow & x \in \Lambda_{\mathbb{T}} \\ M, N \in \Lambda_{\mathbb{T}} & \Rightarrow & (M \ N) \in \Lambda_{\mathbb{T}} \\ M \in \Lambda_{\mathbb{T}}, x \in V, \sigma \in \mathbb{T} & \Rightarrow & (\lambda x^{\sigma}. \ M) \in \Lambda_{\mathbb{T}} \end{array}$$

• В абстрактном синтаксисе

$$\Lambda_{\mathbb{T}} ::= V \mid (\Lambda_{\mathbb{T}} \Lambda_{\mathbb{T}}) \mid (\lambda V^{\mathbb{T}} . \Lambda_{\mathbb{T}})$$

• Все соглашения о скобках и ассоциативности те же, что и в системе Λ .

Примеры предтермов

Система λ_{\rightarrow} а ля Карри:

```
\lambda x y. x
\lambda f g x. f (g x)
\lambda x. x x
```

Система λ_{\rightarrow} а ля Чёрч:

```
\begin{array}{lll} \lambda x^{\alpha} \, y^{\beta} \, . \, x & \equiv & \lambda x \colon \alpha . \, \lambda y \colon \beta . \, x \\ \lambda x^{\alpha} \, y^{\alpha} \, . \, x & \equiv & \lambda x \colon \alpha . \, \lambda y \colon \alpha . \, x \\ \lambda f^{\alpha} \, g^{\beta} \, x^{\gamma} \cdot f(g \, x) & \equiv & \lambda f \colon \alpha . \, \lambda g \colon \beta . \, \lambda x \colon \gamma . \, f(g \, x) \\ \lambda f^{\beta \to \gamma} \, g^{\alpha \to \beta} \, x^{\alpha} \cdot f(g \, x) & \equiv & \lambda f \colon (\beta \to \gamma) . \, \lambda g \colon (\alpha \to \beta) . \, \lambda x \colon \alpha . \, f(g \, x) \\ \lambda x^{\alpha} \cdot x \, x & \equiv & \lambda x \colon \alpha . \, x \, x \end{array}
```

Утверждение о типизации

Определение

Утверждение типизации в λ_{\rightarrow} «а ля Карри» имеет вид

 $M:\tau$

где $M \in \Lambda$ и $\tau \in \mathbb{T}$. Тип τ иногда называют *предикатом*, а терм M - cyбъектом утверждения.

Для λ_{\rightarrow} «а ля Чёрч» надо лишь заменить Λ на $\Lambda_{\mathbb{T}}$.

Примеры утверждений типизации

Система в стиле Карри

 $\lambda x...x:\alpha \rightarrow \alpha$

 $\lambda x. x : (\alpha \to \beta) \to \alpha \to \beta$

 $\lambda x y. x : \alpha \rightarrow \beta \rightarrow \alpha$

Система в стиле Чёрча

 $\lambda x^{\alpha} \cdot x : \alpha \rightarrow \alpha$

 $\lambda x^{\alpha \to \beta} \cdot x : (\alpha \to \beta) \to \alpha \to \beta$

 $\lambda x^{\alpha} y^{\beta} \cdot x : \alpha \to \beta \to \alpha$

Объявления

Определение

Объявление — это утверждение типизации с термовой переменной в качестве субъекта.

Примеры объявлений

 $x:\alpha$

 $y:\beta$

 $f:\alpha\to\beta$

 $g:(\alpha \to \beta) \to \gamma$

Контексты

Определение

Контекст — это множество объявлений с *различными* переменными в качестве субъекта:

$$\Gamma = \{x_1:\sigma_1, x_2:\sigma_2, \dots, x_n:\sigma_n\}$$

Контекст иногда называют базисом или окружением.

• Фигурные скобки множества иногда опускают:

$$\Gamma = x : \alpha, f : \alpha \to \beta, g : (\alpha \to \beta) \to \gamma \equiv x^{\alpha}, f^{\alpha \to \beta}, g^{(\alpha \to \beta) \to \gamma}$$

• Контексты можно *расширять*, добавляя объявление *новой* переменной:

$$\Delta = \Gamma, y^{\beta} = x^{\alpha}, f^{\alpha \to \beta}, g^{(\alpha \to \beta) \to \gamma}, y^{\beta}$$

• Контекст можно рассматривать как (частичную) функцию из множества переменных V в множество типов $\mathbb T$.

Правила типизации $\lambda_{ ightarrow}$ «а ля Карри»

Утверждение M : τ называется **выводимым** в контексте Γ , обозначение

$$\Gamma \vdash M : \tau$$

если его вывод может быть произведен по правилам:

$$x^{\sigma} \in \Gamma \quad \Rightarrow \quad \Gamma \vdash x : \sigma$$

$$\Gamma \vdash M : \sigma \to \tau, \quad \Gamma \vdash N : \sigma \quad \Rightarrow \quad \Gamma \vdash M \, N : \tau$$

$$\Gamma, x^{\sigma} \vdash M : \tau \quad \Rightarrow \quad \Gamma \vdash \lambda x . \, M : \sigma \to \tau$$

Если существуют Γ и τ , такие что $\Gamma \vdash M : \tau$, то предтерм M называют *(допустимым) термом*.

Типизация $\lambda_{ ightarrow}$ «а ля Карри» в виде деревьев вывода

$$\begin{array}{ll} \text{(аксиома)} & \Gamma \vdash x : \sigma, \text{ если } x^{\sigma} \in \Gamma \\ \\ \text{(\rightarrow E)$} & \frac{\Gamma \vdash M : \sigma \to \tau \qquad \Gamma \vdash N : \sigma}{\Gamma \vdash M \, N : \tau} \\ \\ \text{(\rightarrow I)$} & \frac{\Gamma, x^{\sigma} \vdash M : \tau}{\Gamma \vdash \lambda x. \, M : \sigma \to \tau} \end{array}$$

$$\frac{x^{\alpha}, y^{\beta} \vdash x : \alpha}{x^{\alpha} \vdash \lambda y. x : \beta \to \alpha} \xrightarrow{(\to I)} (\to I)$$
$$\vdash \lambda x y. x : \alpha \to \beta \to \alpha$$

Для любых $\sigma, \tau \in \mathbb{T}$ верно $\vdash \lambda x y. x : \sigma \to \tau \to \sigma$.

Пример дерева вывода для ${f B}$ в $\lambda_{ ightarrow}$ «а ля Карри»

Введем сокращение $\Gamma \equiv f^{\beta \to \gamma}, g^{\alpha \to \beta}, x^{\alpha}$ для повторяющегося контекста.

$$\frac{ \begin{array}{c} \Gamma \vdash g : \alpha \to \beta & \Gamma \vdash x : \alpha \\ \hline \Gamma \vdash g : \beta \to \gamma & \Gamma \vdash g x : \beta \\ \hline \\ \hline \frac{f^{\beta \to \gamma}, g^{\alpha \to \beta}, x^{\alpha} \vdash f(gx) : \gamma}{f^{\beta \to \gamma}, g^{\alpha \to \beta} \vdash \lambda x. \, f(gx) : \alpha \to \gamma} & (\to I) \\ \hline \\ \hline \frac{f^{\beta \to \gamma}, g^{\alpha \to \beta} \vdash \lambda x. \, f(gx) : \alpha \to \gamma}{f^{\beta \to \gamma} \vdash \lambda g \, x. \, f(gx) : (\alpha \to \beta) \to \alpha \to \gamma} & (\to I) \\ \hline \\ \hline \vdash \lambda f \, g \, x. \, f(gx) : (\beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma \end{array} }$$

Типизация $\lambda_{ ightarrow}$ «а ля Чёрч» в виде деревьев вывода

$$\begin{array}{ll} \text{(аксиома)} & \Gamma \vdash x : \sigma, \ \text{если} \ x^{\sigma} \in \Gamma \\ \\ \text{(\rightarrow E)$} & \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M \, N : \tau} \\ \\ \text{(\rightarrow I)$} & \frac{\Gamma, x^{\sigma} \vdash M : \tau}{\Gamma \vdash \lambda x^{\sigma}. \, M : \sigma \to \tau} \end{array}$$

$$\frac{x^{\alpha}, y^{\beta} \vdash x : \alpha}{x^{\alpha} \vdash \lambda y^{\beta}. x : \beta \to \alpha} \xrightarrow{(\to I)} (\to I)$$
$$\vdash \lambda x^{\alpha} y^{\beta}. x : \alpha \to \beta \to \alpha$$

Для каждой пары $\sigma, \tau \in \mathbb{T}$ верно $\vdash \lambda x^{\sigma} y^{\tau}. x : \sigma \to \tau \to \sigma$.

Пример дерева вывода для ${f B}$ в $\lambda_{ ightarrow}$ «а ля Чёрч»

Введем сокращение $\Gamma \equiv f^{\beta \to \gamma}, g^{\alpha \to \beta}, \chi^{\alpha}$ для повторяющегося контекста.

$$\frac{\Gamma \vdash g : \alpha \to \beta \qquad \Gamma \vdash x : \alpha}{\Gamma \vdash g x : \beta} \xrightarrow{(\to E)} (\to E)$$

$$\frac{f^{\beta \to \gamma}, g^{\alpha \to \beta}, x^{\alpha} \vdash f(gx) : \gamma}{f^{\beta \to \gamma}, g^{\alpha \to \beta} \vdash \lambda x^{\alpha}. f(gx) : \alpha \to \gamma} \xrightarrow{(\to I)} (\to I)$$

$$\frac{f^{\beta \to \gamma}, g^{\alpha \to \beta} \vdash \lambda x^{\alpha}. f(gx) : (\alpha \to \beta) \to \alpha \to \gamma}{(\to I)} \xrightarrow{(\to I)}$$

$$\vdash \lambda f^{\beta \to \gamma} g^{\alpha \to \beta} x^{\alpha}. f(gx) : (\beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma} \xrightarrow{(\to I)}$$

План лекции

- Понятие типа
- 2 Просто типизированное λ-исчисление
- \odot Формализм систем λ_{\rightarrow}
- f 4 Свойства $\lambda_{
 ightarrow}$

Технические леммы

Лемма об инверсии (лемма генерации)

- $\Gamma \vdash x : \sigma \Rightarrow x^{\sigma} \in \Gamma$.
- $\bullet \ \Gamma \vdash M \ N : \tau \ \Rightarrow \ \exists \sigma \ [\Gamma \vdash M : \sigma \to \tau \ \land \ \Gamma \vdash N : \sigma].$
- $\Gamma \vdash \lambda x. \ M : \rho \ \Rightarrow \ \exists \sigma, \tau \ [\Gamma, x^{\sigma} \vdash M : \tau \ \land \ \rho \equiv \sigma \to \tau].$ (λ_{\to} а ля Карри)
- $\Gamma \vdash \lambda x^{\sigma}$. $M : \rho \Rightarrow \exists \tau \ [\Gamma, x^{\sigma} \vdash M : \tau \land \rho \equiv \sigma \rightarrow \tau]$. $(\lambda_{\rightarrow} \text{ а ля Чёрч})$

Лемма о типизируемости подтерма

Пусть M' — подтерм M. Тогда $\Gamma \vdash M: \sigma \ \Rightarrow \ \Gamma' \vdash M': \sigma'$ для некоторых Γ' и $\sigma'.$

То есть, если терм имеет тип, то каждый его подтерм тоже имеет тип.

Леммы о контекстах

Какой контекст требуется, чтобы произвести присваивание типов?

Лемма «разбавления» (Thinning)

Пусть Γ и Δ — контексты, причём $\Delta \supseteq \Gamma$. Тогда $\Gamma \vdash M : \sigma \Rightarrow \Delta \vdash M : \sigma$. Расширение контекста не влияет на выводимость утверждения типизации.

Лемма о свободных переменных

 $\Gamma \vdash M : \sigma \Rightarrow FV(M) \subseteq \operatorname{dom}(\Gamma)$. Свободные переменные типизированного терма должны присутствовать в контексте.

Лемма сужения

 $\Gamma \vdash M : \sigma \Rightarrow \Gamma \upharpoonright FV(M) \vdash M : \sigma$. Сужение контекста до множества свободных переменных терма не влияет на выводимость утверждения типизации.

Свойства λ_{\rightarrow} : нетипизируемые предтермы

- Рассмотрим предтерм xx. Предположим, что это терм.
- ullet Тогда имеются Γ и au, такие что

$$\Gamma \vdash x x : \tau$$

- По лемме об инверсии существует такой σ , что правый подтерм x : σ , а левый подтерм (тоже x) имеет тип о $\sigma \to \tau$.
- По лемме о контекстах $x \in \mathrm{dom}(\Gamma)$ и должен иметь там единственное связывание по определению контекста. То есть $\sigma = \sigma \to \tau$ тип является подвыражением себя, чего не может быть, поскольку (и пока) типы конечны.

Предтермы $\pmb{\omega}=\lambda x.\,x\,x$, $\pmb{\Omega}=\pmb{\omega}\,\pmb{\omega}$ и $\pmb{Y}=\lambda f.\,(\lambda x.\,f(x\,x))(\lambda x.\,f(x\,x))$ не имеют типа по лемме о типизируемости подтерма.

$$x^{\sigma} \not\vdash x x : \tau, \quad \not\vdash \omega : \sigma, \quad \not\vdash \Omega : \sigma, \quad \not\vdash Y : \sigma.$$

Λ емма подстановки типа для $\lambda_{ ightarrow}$

Определение

Для $\sigma, \tau \in \mathbb{T}$ **подстановку** τ вместо α в σ обозначим $[\alpha \mapsto \tau]\sigma$.

$$[\alpha \mapsto (\gamma \to \gamma)](\alpha \to \beta \to \alpha) \ = \ (\gamma \to \gamma) \to \beta \to \gamma \to \gamma$$

Лемма подстановки типа

$$\Gamma \vdash M : \sigma \Rightarrow [\alpha \mapsto \tau]\Gamma \vdash M : [\alpha \mapsto \tau]\sigma. (\lambda_{\to} \mathsf{Kappu})$$

 $\Gamma \vdash M : \sigma \Rightarrow [\alpha \mapsto \tau]\Gamma \vdash [\alpha \mapsto \tau]M : [\alpha \mapsto \tau]\sigma. (\lambda_{\to} \mathsf{Чёрч})$

Подстановка $[\alpha \mapsto (\gamma \to \gamma)]$:

$$\begin{array}{ccc} x^{\alpha} & \vdash & \lambda y^{\alpha} z^{\beta}. \, x : \alpha \to \beta \to \alpha & \Rightarrow \\ x^{\gamma \to \gamma} & \vdash & (\lambda y^{\gamma \to \gamma} z^{\beta}. \, x) : (\gamma \to \gamma) \to \beta \to \gamma \to \gamma \end{array}$$

Лемма подстановки $extit{терма}$ для $\lambda_{ ightarrow}$

Лемма подстановки терма

Пусть $\Gamma, x^{\sigma} \vdash M : \tau$ и $\Gamma \vdash N : \sigma$, тогда $\Gamma \vdash [x \mapsto N]M : \tau$.

То есть, подходящая по типу подстановка терма сохраняет тип.

Пример

Берём утверждение о типизации

$$x^{\gamma \to \gamma} \vdash \lambda y^{\beta}. x : \beta \to \gamma \to \gamma$$

и подставляем в него вместо свободной переменной x типа $\gamma \to \gamma$ терм λz^γ . z подходящего типа $\gamma \to \gamma$. Получаем

$$\vdash \lambda y^{\beta} z^{\gamma}.z:\beta \rightarrow \gamma \rightarrow \gamma$$

Что произойдет с деревом вывода типа при такой подстановке?

Редукция субъекта в $\lambda_{ ightarrow}$

Лемма подстановки терма позволяет доказать теорему о сохранении типа в процессе вычислений.

Теорема о редукции субъекта

Пусть $M woheadrightarrow_{\beta} N$. Тогда $\Gamma \vdash M : \sigma \Rightarrow \Gamma \vdash N : \sigma$.

- То есть тип терма сохраняется при β-редукциях.
- С вычислительной точки зрения это одно из ключевых свойств любой системы типов.

Следствие

Множество типизируемых в $\lambda_{
ightarrow}$ термов замкнуто относительно редукции.

В обратную сторону эта теорема (и следствие из нее) не верны для λ_{\to} .

Единственность типа в $\lambda_{ ightarrow}$

Теорема о единственности типа для $\lambda_{ ightarrow}$ а ля Чёрч

Пусть $\Gamma \vdash M : \sigma$ и $\Gamma \vdash M : \tau$. Тогда $\sigma \equiv \tau$.

Терм в λ_{\rightarrow} а ля Чёрч имеет единственный тип.

Следствие

Пусть $\Gamma \vdash M : \sigma$, $\Gamma \vdash N : \tau$ и $M =_{\beta} N$. Тогда $\sigma \equiv \tau$.

Типизируемые β -конвертируемые термы имеют одинаковый тип в λ_{\to} а ля Чёрч.

Контрпример для системы а ля Карри

Оба типа подходят для $\mathbf{K} = \lambda x\, y.\, x$ в $\lambda_{
ightarrow}$ а ля Карри:

$$\vdash \lambda x y. x : \alpha \to (\delta \to \gamma \to \delta) \to \alpha$$
$$\vdash \lambda x y. x : (\gamma \to \gamma) \to \beta \to \gamma \to \gamma$$

Для систем в стиле Карри единственности типа нет.

Связь между системами Карри и Чёрча

• Можно задать стирающее отображение $|\cdot|: \Lambda_{\mathbb{T}} \to \Lambda$:

$$|x| \equiv x$$

$$|M N| \equiv |M| |N|$$

$$|\lambda x^{\sigma}. M| \equiv \lambda x. |M|$$

$$M \in \Lambda_{\mathbb{T}} \ \land \ \Gamma \vdash_{\mathsf{Y}} M : \sigma \ \Rightarrow \ \Gamma \vdash_{\mathsf{K}} |M| : \sigma$$

$$M \in \Lambda \ \land \ \Gamma \vdash_{\textbf{K}} M \colon \sigma \ \Rightarrow \ \exists N \in \Lambda_{\mathbb{T}} \left[\Gamma \vdash_{\textbf{Y}} N \colon \sigma \ \land \ |N| \equiv M \right]$$

ullet Для произвольного типа $\sigma\in\mathbb{T}$ выполняется

 σ обитаем в $\lambda\!\!\to\!$ -Карри $\ \Leftrightarrow\ \sigma$ обитаем в $\lambda\!\!\to\!$ -Чёрч

Проблемы разрешимости

• Есть ли алгоритм, который позволяют решить задачу?

⊢ M : σ?	Задача проверки типа Type Checking Problem	3ПТ ТСР
⊢ M : ?	Задача синтеза типа Type Synthesis (or Assgnment) Problem	3CT TSP, TAP
⊢?:σ	Задача обитаемости типа Type Inhabitation Problem	30T TIP

- Для λ_{\to} (и в стиле Чёрча, и в стиле Карри) все эти задачи разрешимы.
- ЗПТ выглядит проще ЗСТ, но в системах Карри они эквивалентны: проверка $M \, N : \sigma$? требует синтеза N : ?.

Слабая и сильная нормализация

Определение

Терм называют *слабо (weak) нормализуемым* (WN), если существует последовательность редукций, приводящих его к нормальной форме.

Определение

Терм называют *сильно (strong) нормализуемым* (SN), если любая последовательность редукций, приводит его к нормальной форме.

Примеры

 $\mathsf{Терм}\;\mathsf{K}\,\mathsf{I}\;\mathsf{K} - \mathsf{сильно}\;\mathsf{нормализуем},$

терм $K I \Omega$ — слабо нормализуем,

терм Ω — не нормализуем.

T еорема о нормализации $\lambda_{ ightarrow}$

Определение

Систему типов называют *слабо нормализуемой* если все её допустимые термы слабо нормализуемы.

Определение

Систему типов называют *сильно нормализуемой* если все её допустимые термы сильно нормализуемы.

T еорема о нормализации $\lambda_{ ightharpoonup}$

Обе системы λ_{\rightarrow} (и Карри, и Чёрча) *сильно нормализуемы*.

To есть любой допустимый терм в λ_{\to} всегда редуцируется к нормальной форме.